Definitions

amortisation: The paying off of a loan in regular instalments over a period of time.
annuity: An investment that has regular and constant payments over a period of time.
annuity investment: An investment that has regular deposits made over a period of time, resulting in the growth of the principal amount.
depreciation: The estimated loss in value of assets as a result of factors including wear and tear, advances in technology, or a lack of demand for those specific items.
effective (annual) interest rate: A rate used to compare the annual interest between loans with different compounding periods, such as daily, weekly or monthly: $r_{\text {eff }}=\left[\left(1+\frac{r}{100 \cdot n}\right)^{n}-1\right] \times 100 \%$
effective life: The length of time that an asset is useful to a business.
flat rate loans: A loan that charges 'flat rate interest' (see simple interest).
future value: The future value of an asset based on the original cost less depreciation.
interest only loans: A loan where the borrower makes only the minimum repayment equal to the interest charged on the loan.
perpetuity: An annuity where a permanently invested sum of money provides regular payments which continue indefinitely.
scrap value: The amount at which an asset is removed from the books of a company as it is considered effectively worthless. Also called the 'write-off value'.
simple interest: Interest calculation based on the original amount borrowed or invested. It is a constant amount; also known as 'flat rate interest'.
superannuation: A fund into which money is contributed by working Australian's employers, and optionally topped up by the employee, each pay period, for use in retirement.
reducing balance depreciation: A method of depreciation where the value of an asset is reduced by a fixed percentage of its previous value. This is an application of compound interest; sometimes called 'diminishing value depreciation'.
reducing balance loans: A loan in which interest is usually charged every month by the financial institution and repayments are made by the borrower on a regular basis. These repayments are larger than the interest for that time period, hence the amount still owing is reduced each time.
unit cost method: A method of depreciating an asset according to its use; the more it is used the faster it will depreciate: $V_{n}=V_{0}-n d$

Formulas

Recursive formulas - used to find the next term given the current term starting from the initial term V_{0}

Increasing progression (growth)	Decreasing progression (decay)
Simple interest $V_{n+1}=V_{n}+d$ where $d=\frac{V_{0} \cdot r}{100}$	Flat rate depreciation $V_{n+1}=V_{n}-d$ where $d=\frac{V_{0} \cdot r}{100}$
Compound interest $V_{n+1}=V_{n} \cdot R$ where $R=\left(1+\frac{r}{100}\right)^{2}$	Reducing balance depreciation where $R=\left(1-\frac{r}{100}\right)$ $V_{n+1}=V_{n} \cdot R$
Annuity investments $V_{n+1}=V_{n} \cdot R+d$ where $R=\left(1+\frac{r}{100}\right)^{r_{n+1}}$ and d is the regular payment	Reducing balance loans $V_{n+1}=V_{n} \cdot R-d$ where $R=\left(1+\frac{r}{100}\right)$ and d is the regular payment

General formulas - used to find any term given the initial term

Increasing progression (growth)	Decreasing progression (decay)
Simple interest $V_{n}=V_{0}+d \cdot n$ where $d=\frac{V_{0} \cdot r}{100}$	Flat rate depreciation $V_{n}=V_{0}-d \cdot n$ where $d=\frac{V_{0} \cdot r}{100}$
Compound interest where $R=\left(1+\frac{r}{100}\right)$ $V_{n}=V_{0} \cdot R^{n}$	Reducing balance depreciation $V_{n}=V_{0} \cdot R^{n}$ where $R=\left(1-\frac{r}{100}\right)$
Annuity investments $V_{n}=V_{0} \cdot R^{n}+\frac{d \cdot\left(R^{n}-1\right)}{R-1}$ where $R=\left(1+\frac{r}{100}\right)$ and d is the regular payment	Reducing balance loans $V_{n}=V_{0} \cdot R^{n}-\frac{d \cdot\left(R^{n}-1\right)}{R-1}$ where $R=\left(1+\frac{r}{100}\right)$ and d is the regular payment

Key:

Symbol	Recursive definition	Application to financial modeling
V_{n}	the current V	value (price) at n
V_{n+1}	the next V	value (price) at $n+1$
V_{0}	the initial V	original amount - principal amount - borrowed amount
d	common difference	regular increase/decrease - regular payment amount - unit cost depreciation
R	common ratio	compounding factor - $\left(1+\frac{r}{100}\right)$ or $\left(1-\frac{r}{100}\right)$ where r is the nominal interest rate

