Topic 10 - Directed graphs and networks

Exercise 10.2 - Critical path analysis

1 Earliest completion time is 30 minutes.

2 The earliest completion time $=147$ days.

3 With an earliest completion time of 30:
$A-B-L-M-N$
$A-B=9+6=15$ minutes, compared to
$E-J=5+4=9$ minutes
So a difference of $15-9=6$
Thus J can increase by $6 ; 4+6=10$
J can increase to 10 .
4 With an earliest completion time of 147:
$A-B-D-G-L-P-R$
$G-L-P-R=20+27+29+30=106$ days
$F-K-Q=23+25+32=80$ days
So a difference of $106-80=26$
If path F and K stay the same, Q can increase by 26 $Q: 32+26=58$ days

5

a Critical path $=\mathrm{A}-\mathrm{B}-\mathrm{L}-\mathrm{M}-\mathrm{N}$
b Float(D) $=30-19-10=1$
Float $(\mathrm{C})=20-15-4=1$
$\operatorname{Float}(\mathrm{H})=30-11-10=9$
Float $(\mathrm{F})=17-5-6=6$

Float $(\mathrm{G})=21-11-4=6$
Float $(\mathrm{E})=11-0-5=6$
Float(K) $=21-5-8=8$
Float $(\mathrm{J})=15-5-4=6$
6 Float $(C)=25-6-11=8$ days
Float $(E)=42-17-17=8$ days
Float $(\mathrm{F})=90-41-23=26$ days
Float $(\mathrm{H})=61-34-19=8$ days
Float $(\mathrm{J})=93-34-21=38$ days
Float $(K)=115-64-25=26$ days
Float $(\mathrm{M})=117-55-24=38$ days
Float $(\mathrm{N})=115-88-26=1$ day
$\operatorname{Float}(\mathrm{Q})=147-114-32=1$ day
7

Activity	Immediate predecessor
D	-
E	D
F	D
G	E, F

Activity D has no predecessor and is the first edge.

Activity E and F have D as an immediate predecessor.

Activity G has E and F as immediate predecessors.

Activity	Immediate predecessor
N	-
O	N
P	O, T
Q	P
R	-
S	N
T	S, Y
U	O, T
V	O, T
W	V
X	Y
Y	R
Z	X

First edges N and R have no immediate predecessors.

N is a predecessor for activity O and S .

R is a predecessor for activity Y .

Y is a precedessor for activity X, S and Y are precedessors for activity T .

O and T are precedessors for activities P, U and V .

P is a precedessor for activity Q, V is a precedessor for activity W.

9 a

Which of the following statements is true?
A Activity A is an immediate predecessor of F. - False, A is a predecessor for C .
B Activity D is an immediate predecessor of F. - True.
C Activity F must be done before activity D. - False, F after D.
D Activity F must be done before activity E. - False.
E Activity D is an immediate predecessor of E. - No, can occur simultaneously.
The answer is \mathbf{B}.
b Minimum time to complete all activities follows path
A-C-F
$=7+12+9$
$=28$ minutes
The answer is \mathbf{D}.
10 a Earliest completion time - fill in triangles with maximum time to each vertex/node

The earliest completion time is 23 minutes.
b Tasks which can be delayed.
Identify sections of the network where there was a choice.

and

$\mathrm{B}-\mathrm{C}=2+5=7 \mathrm{mins}$

$$
\mathrm{D}=9 \mathrm{mins}
$$

$\therefore \mathrm{B}$ and C can be delayed.
$\mathrm{E}-\mathrm{F}=6+4=10 \mathrm{mins}$
$\mathrm{G}=8 \mathrm{mins}$
$\mathrm{H}=11 \mathrm{mins}$
$\therefore \mathrm{E}, \mathrm{F}$, and G can be delayed.
11 The critical path for the network is $\mathrm{A}-\mathrm{C}-\mathrm{F}$.
12 a

Select maximum value. $5+8=13$
The answer is \mathbf{E}.
b

$13+5=18$
The answer is \mathbf{D}.
c The earliest completion time for all tasks is:

13 a

$$
\begin{aligned}
\mathrm{A}-\mathrm{B}-\mathrm{D} & =25+8=33 \\
\mathrm{~A}-\mathrm{C}-\mathrm{E} & =22+10=32 \\
\mathrm{~A}-\mathrm{F} & =10+25=35
\end{aligned}
$$

*Take maximum value

$$
\begin{aligned}
35-\mathrm{G} & =35+6 \\
& =41 \\
35-\mathrm{G}-\mathrm{J} & =41+11 \\
& =52
\end{aligned}
$$

$35-\mathrm{G}-\mathrm{L}=35+6+8$

$$
=49 * \text { Take maximum value }
$$

$$
35-\mathrm{H}=35+10
$$

$$
=45
$$

$52-\mathrm{K}=52+9 *$ Take maximum value $=61$
$49-\mathrm{M}=49+7$

$$
=56
$$

FINAL OUTCOME:

b The earliest completion time for the project

$$
\begin{aligned}
& \text { A-F-G-J-K } \\
& =10+25+6+11+9 \\
& =61 \text { minutes }
\end{aligned}
$$

14 Working backwards to find predecessors.
C and D are predecessors of F.

B is a predecessor of E and D .

A is a predecessor of C .

A and B have no predecessors.

Activity letter	Immediate predecessor	Time
A	-	7
B	-	9
C	A	12
D	B	8
E	B	4
F	C, D	9

15 Working backwards to find predecessors.
E is a predecessor of H and J .

D is a predecessor of G .

B and F are predecessors of E .

C is a predecessor of F .

A is a predecessor of D .

A, B and C have no predecessors.

Activity letter	Immediate predecessor	Time
A	-	3
B	-	4
C	-	5
D	A	6
E	C	5
F	D	8
G	E	18
H	E	8
J	B	6

16 Working backwards to find predecessors.
H and L are predecessors of M .

J is a predecessor of K.

G is a predecessor of J and L .

D, E and F are predecessors of G and H .

B is a predecessor of D.

C is a predecessor of E

A is a predecessor of B, C and F .

A has no predecessor.

Activity letter	Immediate predecessor	Time
A	-	10
B	A	15
C	A	12
D	B	8
E	C	10
F	A	25
G	D, E, F	F
H	G	6
J	J	10
K	G	9
L	H, L	8
M	7	

17 a Critical path - follows activities that cannot be delayed. The path that takes the largest time is

$$
\begin{aligned}
\mathrm{A}-\mathrm{D}-\mathrm{G} & =3+6+18 \\
& =27 \text { minutes }
\end{aligned}
$$

b and \mathbf{c} Float time is the maximum time that an activity can be delayed without delaying a subsequent activity on the critical path.
Activity B can be delayed 10 minutes, Activity C can be delayed 1 minute, Activity E can be delayed 1 minute, Activity F can be delayed 1 minute, Activity H can be delayed 1 minute and Activity J can be delayed 3 minutes.
18 a Critical path $=$ longest path
A-F-G-J-K
$=10+25+6+11+9$
$=61$ minutes
b Activities which have float times are not on the critical path. These are therefore B, D, C, E, H, L and M.
19 a

Activity	Immediate predecessor
A	-
B	-
C	A

Activity A and B have no predecessor, so they become the first edge.

Activity C has A as an immediate predecessor.

b

Activity	Immediate predecessor
A	-
B	A
C	A
D	C
E	B
F	B
G	F
H	D, E, G
J	D, E, G
I	J, H

First edge A has no predecessor.

A is a predecessor for activity B and C .

B is a predecessor for E and F .

C is a predecessor for activity D .

F is a predecessor for activity G .

D, E and G are predecessors for activities H and J .

H and J are predecessors for activity I.

20 a First edge A has no predecessor
A is a predecessor for B and D.
D is a predecessor for E .

E is a predecessor for F .
B and E are predecessors for C .

C and F are predecessors for G .

G is a predecessor for H .

b Minimum time in which all tasks could be completed follow the path
A-B-F-G-H
$=2+20+5+10+12$
$=49$ minutes

Exercise 10.3 - Critical path analysis with backward scanning and crashing
1

Backward Scanning

Critical path $=\mathrm{B}-\mathrm{F}-\mathrm{G}$
Float time for the non-critical activities
A: 3 hours
C: 3 hours
D: 5 hours
E: 5 hours
2 a Enter 10 for the last node.
Enter 8 for the next node before activity J .
Enter 7 for the node before activity H .
Enter either 8-2 (path J, K) or 8-1-1.5 (path H, G) for the node before activities G, K.
Reject the path J, K.
Enter $5.5-2.5=3$ for the node before activity F.
Enter $5.5-1=4.5$ for the node before activity C.
Enter $4.5-2=2.5$ for the node before activity B.
Complete by entering a 0 at the start node.

The critical path is where triangle number = box number: D-F-G-H—J.
b Float times for non-critical activities:
Float $(K)=8-5.5-2=0.5$ hours
$\operatorname{Float}(\mathrm{C})=5.5-3-1=1.5$ hours
$\operatorname{Float}(B)=4.5-1-2=1.5$ hours
$\operatorname{Float}(\mathrm{A})=2.5-0-1=1.5$ hours
Float $(E)=5.5-0-3.5=2$ hours
3 a

Activity letter	Immediate predecessor	Time
A	-	12
B	A	35
C	A	16
D	B	20
E	C	12
F	D, E	5
G	18	

b First edge A (no predecessor).

A is a predecessor for B and C .

B is a predecessor for D.
C is a predecessor for E and F .

D and E are predecessors for G.

c

The earliest completion time is 85 minutes.
d Critical path $=\mathrm{A}-\mathrm{B}-\mathrm{D}-\mathrm{G}$
4 Activities with float time are not on the critical path. These activities would be C, E and F. The answer is \mathbf{C}.
5

6 Create dummy activities $\mathrm{B}^{\prime}, \mathrm{E}^{\prime}$, since C has both A and B as immediate predecessors and F has both D and E as immediate predecessors.
Alternatively, A could have a dummy activity instead of B , and D could have a dummy activity instead of E .

7 | Activity letter | Immediate predecessor | Time (\boldsymbol{h}) |
| :---: | :---: | :---: |
| A | - | 3 |
| B | - | 5 |
| C | A | 7 |
| D | B | 7 |
| E | B, C | 1 |
| F | D, E | 2 |

A and B are first edges and have no predecessors.

A is a predecessor of C .
B is a predecessor of D and E.
C also a predecessor of E .
(to skip a parallel edge use dummy edge B^{\prime})

D and E are predecessors of F .

8

By examining outflow at $\mathrm{A}(1000+600+800)$ and inflow at $F(100+600+1600)$, the maximum possible flow could be 2300 .
9 a Forward scan shows that the earliest completion time is 36 minutes.

b Backward scan shows that the critical path is A-C-D-F.
c Float times for non-critical activities:
Float $(E)=27-15-7=5$ minutes
Float $(B)=7-0-6=1$ minute

10 The critical path is $\mathrm{A}-\mathrm{B}-\mathrm{D}-\mathrm{G}-\mathrm{L}-\mathrm{P}-\mathrm{R}$.

11

Forward Scanning

Backward Scanning

Critical path is B-D
Float times for the non-critical activities
A: 1 minute
C: 1 minute
E: 1 minute
12 a

Earliest completion time $=31$ days
b Critical path, from the network, where the 'triangle' numbers are equal to the 'box' numbers. A-C-E-G
c If Activity E is reduced to 9 days, the $\mathrm{A}-\mathrm{C}-\mathrm{E}-\mathrm{G}$ path is reduced to 28 days, which is still greater than the other possible path (A-B-D-F).
13 Float time for activity D
$=25-18-3$
$=4$ days
The answer is \mathbf{D}.
14 a J, K and L are predecessors of N .

F is a predecessor of K.

D and E are predecessors of J .

M and G are predecessors of L .

H is a predecessor of M .

C is a predecessor of G and H .

B is a predecessor of E and F.

A is a predecessor of D .

A, B and C have no predecessors.

Activity letter	Immediate predecessor	Time
A	-	3
B	-	4
C	-	6

(continued)

Activity letter	Immediate predecessor	Time
D	A	7
E	B	8
F	B	5
G	C	12
H	C	2
J	D, E	11
K	F	10
L	G, M	3
M	H	9
N	J, K, L	6

b and c

The earliest completion time is 29 minutes.
The critical path is B-E-J-N. (Where the 'triangle' numbers are equal to the 'box' numbers.)
d Non-critical activities are:
A, C, D, F, G, H, K, L and M.
Float times are
A: $5-0-3=2$
C: $8-0-6=2$
D: $12-3-7=2$
F: $13-4-5=4$
G: $20-6-12=2$
$\mathrm{H}: 11-6-2=3$
K: $23-9-10=4$
L: $23-18-3=2$
M: $20-8-9=3$
15 a A and B are first edges and have no predecessors.

A is a predecessor for C and D .

B is a predecessor for E .

C is a predecessor for F .

D and E are predecessors for G .

G is a predecessor for H and J .

F and H are predecessors for K .

b

Earliest completion time $=24$ hours.
c Critical path A-D-G-H-K

Activity	Time	EST	EFT	Float Time
B	3	0	8	5
C	4	5	11	2
E	4	3	12	5
F	9	9	20	2
J	6	17	24	1

16

17 a \begin{tabular}{|c|c|c|}

\hline | Activity |
| :---: |
| letter | \& | Immediate |
| :---: |
| predecessor | \& Time (h)

\hline A \& - \& 11

\hline B \& - \& 9

\hline C \& A \& 2

\hline
\end{tabular}

(continued)

Activity letter	Immediate predecessor	Time (h)
D	A	5
E	B	12
F	C	3
G	D	3
H	E	4
J	E, F, G	7

A and B are first edges and have no predecessors.

A is a predecessor of C and D.
B is a predecessor of E.

C is a predecessor of F .
D is a predecessor of G.

E is a predecessor of H and J .
F and G are predecessors of J as well
(as $\mathrm{E}, \mathrm{F}, \mathrm{G}-\mathrm{J}$, but E also needs - H , use a dummy edge E^{\prime}).

Forward/Backward Scanning
b Earliest completion time $=28$ hours
c Critical path $=\mathrm{B}-\mathrm{E}-\mathrm{E}^{\prime}-\mathrm{J}$

Activity	Time	EST	EFT	Float Time
A	11	0	13	2
C	2	11	18	5
D	5	11	18	2
F	3	13	21	5
G	3	16	21	2
H	4	21	28	3

\mathbf{a} and \mathbf{b}

Earliest completion time $=35$ days
Critical path $=\mathrm{C}-\mathrm{F}-\mathrm{J}-\mathrm{M}-\mathrm{Q}$
c Float time for activity $\mathrm{X}=\mathrm{EFT}-\mathrm{EST}-$ Time

$$
\begin{aligned}
& =16-10-3 \\
& =3 \text { days }
\end{aligned}
$$

d When J is reduced by 2 days to 5 days, the earliest completion time is reduced to 34 days. The new critical path becomes $\mathrm{C}-\mathrm{F}-\mathrm{H}-\mathrm{P}$. J is no longer a critical activity.
LST for $\mathrm{J}=29-8=21$
So, LST for $\mathrm{I}=17$
So, activity time $\mathrm{I}=24-17=7$
LST for $\mathrm{G}=24-4=20$
LST for $\mathrm{D}^{\prime}=17-0=17$
So, LFT for D and $\mathrm{E}=17$
LST for $\mathrm{E}=17-1=16$
So, LST for $\mathrm{F}=15$
So, activity time F $=24-15=9$
LST for A and $\mathrm{B}=0$

b Critical path $=\mathrm{A}-\mathrm{C}-\mathrm{I}-\mathrm{K}$
c Float time for $\mathrm{F}=24-8-9=7$
20 a Activity time for $\mathrm{K}=44-38=6$
LST for $\mathrm{D}=25-9=16$
LST for $\mathrm{B}^{\prime}=16$
LST for $\mathrm{F}=38-16=22$
So, LST for $\mathrm{E}=14$
So, activity time $\mathrm{E}=25-14=11$
LST for $\mathrm{H}=30-18=12$
LST for $\mathrm{G}=38-20=18$
So, LFT for $\mathrm{A}=12$

b Critical path $=\mathrm{A}-\mathrm{H}-\mathrm{I}-\mathrm{K}$
c Float time for $\mathrm{F}=38-10-16=12$
21 a Immediate predecessors of C and F are A, C and D respectively.
EST for $\mathrm{G}=3$ hours
EST for $\mathrm{K}=3+2+9=14$ hours
b EST for $\mathrm{J}=17$ and EST for $\mathrm{F}=9$
So, activity time $\mathrm{X}=17-9=8$ hours

c Critical path $=\mathrm{A}-\mathrm{C}-\mathrm{X}-\mathrm{J}$
d Earliest completion time $=22$
LST for $\mathrm{K}=22-7=15$
LST for $\mathrm{H}=15-9=6$ hours after start
22

a 5 weeks
b Minimum time is 15 weeks.
c Critical path is A-E-F-I
d Slack time is $12-9=3$ weeks
e Stages along the critical path can be shortened:
A-E-F-I (from the critical path)
f After stages A and F being reduced to 2 weeks the new critical path will be C-D-I with a minimum time for completion 14 weeks.

Exercise 10.4 - Network flow

1 | From | To | Flow capacity |
| :---: | :---: | :---: |
| R | S | 250 |
| S | T | 200 |
| T | U | 100 |
| T | V | 100 |
| U | V | 50 |

2 | From | To | Flow capacity |
| :--- | :--- | :--- |

E	F	8
E	G	8
G	H	5
G	J	3
F	H	2
F	J	6
J	K	8
H	K	8

Flow Capacity

minimum $=200$

minimum $=200$

minimum $=150$
a \therefore Flow capacity $=150$
b This does meet the demand as V requires 150 .
4

Flow Capacity

minimum $=16$

a \therefore Flow capacity $=15$
b No this does not meet the demand as K requires 16 .
5 a

b Flow Capacity

$($ Minimum $=50)$

$($ Minimum $=100)$
Total Flow Capacity $=150$
6 a

b Flow Capacity
Total Flow Capacity $=15$ (as shown in question $\mathbf{2}$)

$$
+10(\mathrm{E}-\mathrm{K})
$$

$$
=25
$$

7 Considering outflow at A and inflow at H, the largest possible flow is 130 .

Note that cut 4 is in fact not a cut as it fails to stop all flow.
Some possible cuts are:
CUT $1=70+40=110$
CUT $2=50+30+40=120$
CUT $3=60+70=130$
Any other cut is more than 110.
Minimum cut $=$ maximum flow $=110$.
8 a Cut 2 is invalid as it does not stop all flow from A to E .
b CUT $1=9+7+12=28$
CUT $3=4+4+7+5+8=28$
CUT $4=4+4+7+12=27$
c

Minimum cut is $4+12+8=24$
Therefore the maximum flow is 24 .
9 a

b Maximum flow $=71$
$(35+11+25)$
10 a

b Maximum flow $=240$
$(60+110+25+45)$
11 a

From	To	Flow capacity
A	B	100
A	C	200
B	C	50
C	D	250
D	E	300

b

From	To	Flow capacity
M	N	20
M	Q	20
N	O	15
N	R	5
Q	R	10
O	P	12
R	P	12

12

a The inflow of B is 23 .

b Edge capacity flowing out of B is 16 .

c The outflow from B is the minimum of \mathbf{a} and \mathbf{b}, so 16 .
13

a The inflow of B is $4+2=6$.

b Edge capacity flowing out of B is 3 .

c The outflow from B is the minimum of \mathbf{a} and \mathbf{b}, so 3 .
14 a

Flow capacity outflow

B 50 A 200	$\}$meets C demand of 250	
C	\uparrow	
	250	\rightarrowso D can only have 250

i \therefore Flow capacity $=250$
ii This doesn't meet the demand as E requires 300 .
b

Flow Capacity

minimum $=30$

minimum $=24$

i \therefore Flow capacity $=24$
ii This does meet the demand as P requires 24 .
15 a

From	To	Flow capacity
A	B	4
A	C	5
A	D	3
B	E	3
C	B	2
C	E	4
D	C	2
D	E	6

b

From	To	Flow capacity
A	B	4
A	C	5
A	D	3
B	E	3
B	C	2
C	E	4
D	C	2
D	E	6

c

From	To	Flow capacity
A	B	4
A	C	7
A	D	3
A	E	5
B	E	3
C	E	8
D	B	2
D	E	6

d

From	To	Flow capacity
A	B	4
A	C	7
A	D	12
A	E	5
C	F	7
D	B	2
D	E	6
D	F	4
F	E	8

16 a

(5, but $2 \rightarrow B \Rightarrow 4$)

(3, but $2 \rightarrow \mathrm{C} \Rightarrow 1$)

(3)
but $\mathrm{A} \rightarrow \mathrm{B}$ doesn't use all 6 , so extra 2 from C not required and \therefore extra 2 from D not required
B $\rightarrow 3$
C $\rightarrow 4$
D $\rightarrow 3$
Flow capacity 10
b

(minimum flow $=4$) Capacity met on this flow, so flow from B and C not required.

(Minimum flow $=3$)

(Minimum flow $=3$)
Total Flow Capacity $=4+3+3$

$$
=10
$$

c

(Minimum $=7$)

$($ Minimum $=5)$

(Minimum $=3$)
not required

$($ Minimum $=3)$
Total Flow Capacity $=18$
d

(Minimum $=5$)

(Minimum $=3$)

(Minimum $=6$ to E and D)

(Minimum = 8)
Total Flow Capacity $=22$
17

ii Flow Capacity

(Minimum $=50$)

(Minimum $=250$)
Total Flow Capacity $=300$
b i

ii Flow Capacity

(Minimum $=12$, excess 3)

(Minimum $=12$, excess 3)

(Minimum $=5$)
Total Flow Capacity $=29$
18 In question $\mathbf{1 7 b}$, the outflow from N is 20 .
The answer is \mathbf{B}.

19 a Cut 4 is invalid since it does not stop all flow from A to G .
b Cut $1=6+9+10=25$
Cut $2=5+8+13=26$
Cut $3=11+13=24$
Cut $5=6+8+5+10=29$
c Minimum cut $=$ maximum flow $=11+5+4=20$
20 a i

ii Maximum flow $=31$ $(12+1+10+8)$
b i

ii Maximum flow $=18$

$$
(8+4+6)
$$

21

22 a There would be a traffic jam because inflow $>$ outflow. Node E can only handle $(80+50)=130$.
b At node H , the traffic should flow smoothly as the inflow (100) is less than the capacity of flows leading from H .

As node H has the potential to carry another 40 cars, then join a road between E and H .

Exercise 10.5 - Assignment problems and bipartite graphs

1 Electricity produced = supply
$4000 \mathrm{kWh}, 5000 \mathrm{kWh}$,
and 6000 kWh
Total $=15,000 \mathrm{kWh}$
Towns supplied = demand
Town A $=20 \%$ of 15000

$$
=3000 \mathrm{kWh}
$$

Town B $=25 \%$ of 15000

$$
=3750 \mathrm{kWh}
$$

Town C $=15 \%$ of 15000

$$
=2250 \mathrm{kWh}
$$

Town $\mathrm{D}=15000-(3000+3750+2250)$

$$
=6000 \mathrm{kWh}
$$

2 a

b Send 30000 from S1 to A, 30000 from S2 to A, 10000 from S2 to B, 5000 from B to B, 5000 from B to C and 25000 from C to C . (This may not be the cheapest method.)

3

4 Based on information in question 3, 'Brian and Chris between them have more different dishes than David and Earl'. The answer is D.
Brian and Chris have Fish, Soup, Beef and Dessert while David and Earl have Dessert, Beef and Fish.

5
X Y Z

A
B
C $\left[\begin{array}{lll}6 & 3 & 7 \\ 2 & 4 & 5 \\ 3 & 5 & 2\end{array}\right]$
Subtract
Smallest in Row $\mathrm{A}=3$
in Row $B=2$
in Row $\mathrm{C}=2$
X Y Z
A
B
C $\left[\begin{array}{ccc}-3 & 0 & 4 \\ -0 & 2 & 3 \\ -1 & 3 & 0\end{array}\right]$
Number of lines $=$ number of columns

There is only 1 possible allocation:

$$
\begin{aligned}
\mathrm{A} \rightarrow \mathrm{Y}, \mathrm{~B} & \rightarrow \mathrm{X}, \mathrm{C} \rightarrow \mathrm{Z} \\
\text { Total time } & =3+2+2 \\
& =7 \text { hours }
\end{aligned}
$$

6
W X Y Z
A
B
C
D $\left[\begin{array}{llll}4 & 3 & 7 & 3 \\ 9 & 4 & 6 & 5 \\ 5 & 6 & 7 & 8 \\ 4 & 8 & 3 & 5\end{array}\right]$

Subtract
Smallest in Row A $=3$
in Row $B=4$
in Row $\mathrm{C}=5$
in Row $\mathrm{D}=3$
W X Y Z
A
B
C
D $\left[\begin{array}{llll}1 & \phi & 3 & \phi \\ \$ & \phi & 2 & 1 \\ & \$ & 2 & 3 \\ & \$ & 0 & 2\end{array}\right]$

Number of lines $=$ number of columns

Allocation: $\mathrm{D} \rightarrow \mathrm{Y}, \mathrm{C} \rightarrow \mathrm{W}, \mathrm{B} \rightarrow \mathrm{X}$, so $\mathrm{A} \rightarrow \mathrm{Z}$
Total time $=3+4+5+3$

$$
=15 \text { hours }
$$

$7\left[\begin{array}{cccc}6 & 9 & 9 & 4 \\ 10 & 9 & 9 & 7 \\ 4 & 9 & 6 & 3 \\ 5 & 8 & 8 & 6\end{array}\right]$
Row reduction
Subtract smallest in Row $1=4$

$$
\begin{aligned}
& 2=7 \\
& 3=3 \\
& 4=5
\end{aligned}
$$

$\left[\begin{array}{llll}2 & 5 & 5 & 0 \\ 3 & 2 & 2 & 0 \\ 1 & 6 & 3 & 0 \\ 0 & 3 & 3 & 1\end{array}\right]$
Column reduction
Subtract smallest in Column $1=0$

$$
\begin{aligned}
& 2=2 \\
& 3=2 \\
& 4=0
\end{aligned}
$$

Smallest uncovered number $=1$
$\left[\begin{array}{llll}2 & 3 & 3 & 1 \\ 4 & 1 & 1 & 2 \\ 1 & 4 & 1 & 1 \\ 1 & 2 & 2 & 3\end{array}\right]$
Subtract overall smallest number $=1$
$\left[\begin{array}{cccc}1 & 2 & 2 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 1 & 2\end{array}\right]$
4 lines required
Minimum total allocation
$4+6+9+5=24$
Solved by Hungarian Algorithm
$\mathbf{8}\left[\begin{array}{cccc}5 & 23 & 14 & 9 \\ 11 & 29 & 6 & 14 \\ 21 & 17 & 14 & 13 \\ 20 & 27 & 22 & 8\end{array}\right]$
Row reduction subtract
Smallest number in Row $1=5$

$$
\begin{aligned}
& 2=6 \\
& 3=13 \\
& 4=8
\end{aligned}
$$

$\left[\begin{array}{cccc}0 & 18 & 9 & 4 \\ 5 & 23 & 0 & 8 \\ 8 & 4 & 1 & 0 \\ 12 & 19 & 14 & 0\end{array}\right]$
Column reduction subtract
Smallest number in Column $1=0$

$$
\begin{aligned}
& 2=4 \\
& 3=0 \\
& 4=0
\end{aligned}
$$

Solved by Column reduction.
Minimum total allocation $=5+17+6+8$

$$
=36
$$

9 Produces \therefore supply

- produces 1000 copies per month
$400 \rightarrow$ Factory 1
$600 \rightarrow$ Factory 2
Distributed \therefore Demand
- Queensland $=350$

Victoria $=1000-350$

$$
=650
$$

10 From the bipartite graph it can be said that:
"Mal and Frances, in total, have more hobbies than Sam and Will". The answer is B.

11
A
B
C
D $\left[\begin{array}{llll}16 & 14 & 20 & 13 \\ 15 & 16 & 17 & 16 \\ 19 & 13 & 13 & 18 \\ 22 & 26 & 20 & 24\end{array}\right]$

Subtract
Smallest in Row A $=13$
in Row $B=15$
in Row $\mathrm{C}=13$
in Row $\mathrm{D}=20$
W X Y Z
A
B
C
D $\left[\begin{array}{cccc}-3 & 1 & 7 & 0 \\ -0 & 1 & 2 & 1 \\ -6 & 0 & 0 & 5 \\ -2 & 6 & 0 & 4\end{array}\right]$

$\mathrm{A} \rightarrow \mathrm{Z}, \mathrm{B} \rightarrow \mathrm{W}$
$\mathrm{C} \rightarrow \mathrm{X}$ (as no other to X)
$\therefore \mathrm{D} \rightarrow \mathrm{Y}$
Total time $15+13+13+20=61$ hours

12

1
2
3 $\left[\begin{array}{lll}30 & 50 & 35 \\ 45 & 50 & 30 \\ 40 & 60 & 30\end{array}\right]$

Subtract

Smallest in Row $1=30$
Row $2=30$
Row $3=30$
Game Doll Truck

Minimum cost
$1 \rightarrow \mathrm{G}=\$ 30$
Between Store 2 and 3 it is cheaper to buy the Doll from Store $2 \therefore 3 \rightarrow \mathrm{~T}$

$\therefore 30+50+30=\$ 110$
14 A $\left[\begin{array}{lll}7 & 3 & 7 \\ 3 & 3 & 5\end{array}\right.$
B
C $\left[\begin{array}{lll}3 & 3 & 5 \\ 6 & 5 & 5\end{array}\right]$
Subtract
Smallest in Row $\mathrm{A}=3$ in Row $\mathrm{B}=3$ in Row $\mathrm{C}=5$

A
B
C $\left[\begin{array}{ccc}-4 & 0 & -4 \\ -0 & 0 & 2 \\ -1 & 0 & 0\end{array}\right]$
Allocation. $\mathrm{A} \rightarrow 3$, $\mathrm{B} \rightarrow 3, \mathrm{C} \rightarrow 5$
$\therefore 3+3+5=11$
The answer is \mathbf{B}.
15 a
D1 D2 D3 D4 D5
Car 1
2
3
4
5 $\left[\begin{array}{lllll}20 & 15 & 17 & 16 & 18 \\ 17 & 15 & 19 & 17 & 16 \\ 18 & 19 & 16 & 19 & 16 \\ 19 & 19 & 17 & 21 & 17 \\ 24 & 19 & 17 & 17 & 17\end{array}\right]$

Row Reduction
Subtract
Smallest in Row 1=15

$$
\begin{aligned}
& 2=15 \\
& 3=16 \\
& 4=17
\end{aligned}
$$

$$
5=17
$$

D1 D2 D3 D4 D1
Carl
2
3
4
5 $\left[\begin{array}{lllll}5 & \phi & 2 & 1 & 3 \\ 2 & 0 & 4 & 2 & 1 \\ 2 & 3 & 0 & 3 & 0 \\ 2 & 2 & 0 & 4 & 0 \\ 7 & 2 & 0 & 0 & 0\end{array}\right]$

Column Reduction
Subtract
Smallest in Column 1=2

$$
\begin{aligned}
& 2=0 \\
& 3=0 \\
& 4=0 \\
& 5=0
\end{aligned}
$$

D1 D2 D3 D4 D1
Car 1
2
3
4
5 $\left[\begin{array}{lllll}3 & 0 & 2 & 1 & 3 \\ 0 & 0 & 4 & 2 & 1 \\ 0 & 3 & 0 & 3 & 0 \\ 0 & 2 & 0 & 4 & 0 \\ 5 & 2 & 0 & 0 & 0\end{array}\right]$

c i $\mathrm{C} 1 \rightarrow \mathrm{D} 2, \mathrm{C} 2 \rightarrow \mathrm{D} 1, \mathrm{C} 5 \rightarrow \mathrm{D} 4, \mathrm{C} 3 \rightarrow \mathrm{D} 3$,
$\mathrm{C} 4 \rightarrow \mathrm{D} 5$ or $\mathrm{C} 1 \rightarrow \mathrm{D} 2, \mathrm{C} 2 \rightarrow \mathrm{D} 1, \mathrm{C} 5 \rightarrow \mathrm{D} 4$,
$\mathrm{C} 3 \rightarrow \mathrm{D} 5, \mathrm{C} 4 \rightarrow \mathrm{D} 3$
ii Total $=\$ 82000$
16
$\left[\begin{array}{llll}10 & 15 & 12 & 17 \\ 17 & 21 & 19 & 14 \\ 16 & 22 & 17 & 19 \\ 23 & 26 & 29 & 27\end{array}\right]$

Row reduction
Subtract smallest in Row $1=10$

$$
\begin{aligned}
& 2=14 \\
& 3=16 \\
& 4=23
\end{aligned}
$$

$$
\left[\begin{array}{llll}
0 & 5 & 2 & 7 \\
3 & 7 & 5 & 0 \\
0 & 6 & 1 & 3 \\
0 & 3 & 6 & 4
\end{array}\right]
$$

Column Reduction
Subtract smallest in Column $1=0$

$$
\begin{aligned}
& 2=3 \\
& 3=1 \\
& 4=0
\end{aligned}
$$

Minimum number of lines required $=4$ Solved at Column reduction.
Minimum total allocation $=10+26+17+14$
$\mathbf{b}\left[\begin{array}{ccccc}12 & 10 & 11 & 13 & 11 \\ 11 & 11 & 13 & 12 & 12 \\ 12 & 16 & 13 & 16 & 12 \\ 9 & 10 & 9 & 11 & 9 \\ 14 & 11 & 11 & 11 & 11\end{array}\right]$
Row reduction subtract
Smallest number in Row $1=10$

$$
2=11
$$

$$
3=12
$$

$$
4=9
$$

$$
5=11
$$

$$
\left[\begin{array}{lllll}
2 & 0 & 1 & 3 & 1 \\
0 & 0 & 2 & 1 & 1 \\
0 & 4 & 1 & 4 & 0 \\
0 & 1 & 0 & 2 & 0 \\
3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solved by row reduction Minimum total allocation $=10+11+12+9+11$ $=53$
17 a
$\left.\begin{array}{l} \\ \text { A } \\ \text { B } \\ \text { C } \\ \text { D }\end{array} \begin{array}{cccc}\text { J1 } & \text { J2 } & \text { J3 } & \text { J4 } \\ 30 & 40 & 50 & 60 \\ 70 & 30 & 40 & 70 \\ 60 & 50 & 60 & 30 \\ 20 & 80 & 50 & 70\end{array}\right]$

Row Reduction
Subtract
Smallest number in Row A $=30$
$B=30$
$\mathrm{C}=30$
D $=20$
$\begin{array}{llll}\text { J1 } & \text { J2 } & \text { J3 } & \text { J4 }\end{array}$
A
B
C
D $\left[\begin{array}{cccc}0 & 10 & 20 & 30 \\ 40 & 0 & 10 & 40 \\ 30 & 20 & 30 & 0 \\ 0 & 60 & 30 & 50\end{array}\right]$

Column Reduction

Subtract
Smallest number in Column J1 $=0$

$$
\begin{aligned}
& \mathrm{J} 2=0 \\
& \mathrm{~J} 3=10 \\
& \mathrm{~J} 4=0
\end{aligned}
$$

J1 $\begin{array}{llll}\text { J2 } & \text { J3 } & \text { J4 }\end{array}$
A
B
C
D $\left[\begin{array}{cccc}0 & 10 & 10 & 30 \\ -40 & 0 & 0 & 40 \\ -30 & 20 & 20 & 0 \\ 0 & 60 & 20 & 50\end{array}\right]$
b Hungarian Algorithm
Smallest uncovered number $=10$
$\left.\begin{array}{l} \\ \mathrm{A} \\ \mathrm{B} \\ \mathrm{C} \\ \mathrm{D}\end{array} \begin{array}{cccc}\mathrm{J} 1 & \text { J2 } & \text { J3 } & \text { J4 } \\ 10 & 10 & 10 & 30 \\ 60 & 10 & 10 & 50 \\ 50 & 30 & 30 & 10 \\ 10 & 60 & 20 & 50\end{array}\right]$

Overall smallest number $=10$
A
B
C
D $\quad\left[\begin{array}{cccc}0 & \text { J2 } & \text { J3 } & \text { J4 } \\ 0 & 0 & 0 & 20 \\ 50 & 0 & 0 & 40 \\ 40 & 20 & 20 & 0 \\ 0 & 50 & 10 & 40\end{array}\right]$
(One possible result)

d i $\mathrm{A} \rightarrow 2, \mathrm{~B} \rightarrow 3, \mathrm{C} \rightarrow 4, \mathrm{D} \rightarrow 1$ or $\mathrm{A} \rightarrow 3, \mathrm{~B} \rightarrow 2$,

$$
\mathrm{C} \rightarrow 4, \mathrm{D} \rightarrow 1
$$

ii Total $=40+40+30+20$

$$
=130 \text { minutes }
$$

18
T
U
V
W $\left[\begin{array}{cccc}100 & 50 & 35 & 55 \\ 60 & 45 & 70 & 55 \\ 40 & 70 & 50 & 30 \\ 70 & 50 & 70 & 70\end{array}\right]$

Row Reduction
Subtract Smallest in Row T $=35$

$$
\begin{aligned}
\mathrm{U} & =45 \\
\mathrm{~V} & =30 \\
\mathrm{~W} & =50
\end{aligned}
$$

T
U
U
V

W | J1 | J2 | J3 | J4 |
| :---: | :---: | :---: | :---: |
| | $\left[\begin{array}{cccc}65 & 15 & 0 & 20 \\ 15 & 0 & 25 & 10 \\ 10 & 40 & 20 & 0 \\ 20 & 0 & 20 & 20\end{array}\right]$ | | |

Column Reduction
Subtract smallest number from Column $1=10$

Hungarian Algorithm
Smallest uncovered number $=5$
T
U
V
W $\left[\begin{array}{cccc}\mathrm{J} 1 & \mathrm{~J} 2 & \mathrm{~J} 3 & \mathrm{~J} 4 \\ 60 & 25 & 5 & 25 \\ 5 & 5 & 25 & 10 \\ 5 & 50 & 25 & 5 \\ 10 & 5 & 20 & 20\end{array}\right]$

Smallest number $=5$
$\left.\begin{array}{c} \\ \mathrm{T} \\ \mathrm{U} \\ \mathrm{V} \\ \mathrm{W}\end{array} \begin{array}{cccc}\mathrm{J} 1 & \text { J2 } & \text { J3 } & \text { J4 } \\ -55 & 20 & 0 & 0 \\ -0 & 0 & 20 & 5 \\ -0 & 45 & 20 & 0 \\ -5 & 0 & 15 & 5\end{array}\right]$
a $\mathrm{T} \rightarrow 3, \mathrm{U} \rightarrow 1, \mathrm{~V} \rightarrow 4, \mathrm{~W} \rightarrow 2$
b Time $=35+60+30+50$

$$
=175 \text { minutes }
$$

19 a
K
L
M
N $\left[\begin{array}{cccc}\mathrm{A} & \mathrm{C} & \mathrm{F} & \mathrm{G} \\ 60 & 78 & 67 & 37 \\ 45 & 80 & 70 & 90 \\ 60 & 35 & 70 & 86 \\ 42 & 66 & 54 & 72\end{array}\right]$

First modify the minimisation problem, by subtracting each number by the overall largest value, 90 .
K
L
M
N $\left[\begin{array}{cccc}\text { A } & \mathrm{C} & \mathrm{F} & \mathrm{G} \\ 30 & 12 & 23 & 53 \\ 45 & 10 & 20 & 0 \\ 30 & 55 & 20 & 4 \\ 48 & 24 & 36 & 18\end{array}\right]$

Row Reduction subtract
Smallest from row $\mathrm{K}=12$

$$
\begin{aligned}
\mathrm{L} & =0 \\
\mathrm{M} & =4 \\
\mathrm{~N} & =18
\end{aligned}
$$

A \quad C \quad F \quad G
K
L
M
N $\left[\begin{array}{cccc}18 & 0 & 11 & 41 \\ 45 & 10 & 20 & 0 \\ 26 & 51 & 16 & 0 \\ 30 & 6 & 18 & 0\end{array}\right]$
Column Reduction subtract
Smallest from column A $=18$

$$
\begin{aligned}
& \mathrm{C}=0 \\
& \mathrm{~F}=11 \\
& \mathrm{G}=0
\end{aligned}
$$

b \quad A \quad C \quad F \quad G
K
L
M
N $\left[\begin{array}{cccc}0 & 0 & 0 & 41+ \\ 27 & 10 & 9 & 0 \\ 8 & 51 & 5 & 0 \\ 12 & 6 & 7 & 0\end{array}\right]$
c To solve, continue with Hungarian Algorithm Smallest uncovered number $=5$
$\left.\begin{array}{c} \\ \mathrm{K} \\ \mathrm{L} \\ \mathrm{M} \\ \mathrm{N}\end{array} \begin{array}{cccc}\mathrm{A} & \mathrm{C} & \mathrm{F} & \mathrm{G} \\ 5 & 5 & 5 & 51 \\ 27 & 10 & 9 & 5 \\ 8 & 51 & 5 & 5 \\ 12 & 6 & 7 & 5\end{array}\right]$

Subtract smallest number from all $=5$

Repeat
Smallest uncovered number $=1$
K
L
M
N $\left[\begin{array}{cccc}\mathrm{A} & \mathrm{C} & \mathrm{F} & \mathrm{G} \\ 1 & 1 & 1 & 48 \\ 22 & 5 & 4 & 1 \\ 4 & 47 & 1 & 2 \\ 7 & 1 & 2 & 1\end{array}\right]$

Subtract smallest number from all $=1$

Ken \rightarrow Algebra,
Louise \rightarrow Geometry,

P1 P2 P3 P4

Smallest uncovered number $=1$
P1 P2 P3 P4
V1
V2
V3
V4 $\left[\begin{array}{cccc}1 & 1 & 1 & 10 \\ 1 & 1 & 9 & 1 \\ 1 & 5 & 5 & 2 \\ 10 & 1 & 1 & 2\end{array}\right]$

Subtract Smallest number $=1$ P1 P2 P3 P4
V1
V2
V3
V4 $\left[\begin{array}{llll}\phi & \phi & \phi & \phi \\ \phi & \phi & \phi & \phi \\ \phi & 4 & 4 & \\ \phi & \phi & \phi & f\end{array}\right]$
a $\mathrm{V} 1 \rightarrow \mathrm{P} 2, \mathrm{~V} 2 \rightarrow \mathrm{P} 4, \mathrm{~V} 3 \rightarrow \mathrm{P} 1, \mathrm{~V} 4 \rightarrow \mathrm{P} 3$ or $\mathrm{V} 1 \rightarrow \mathrm{P} 3, \mathrm{~V} 2 \rightarrow \mathrm{P} 4, \mathrm{~V} 3 \rightarrow \mathrm{P} 1, \mathrm{~V} 4 \rightarrow \mathrm{P} 2$
b Total $=17+9+9+13$
$=48 \mathrm{~km}$

