FURTHER MATHEMATICS
Teach Yourself Series

Topic 6: Reducing balance loans and Annuities
Contents

1. Solutions to Review Questions
2. As it appears in Unit 4
3. Amortization table
4. Review Questions
5. As it appears in Unit 4
6. Perpetuities and annuity investments
7. Review Questions
8. As it appears in Unit 4
9. Reducing balance and level rate comparisons
10. Using TVM Solver
11. Review Questions
12. As it appears in Unit 4
13. Annuities as a recurrence relation
14. Reducing balance loans
Reducing balance loans

In reducing balance loans, interest is usually charged every month by the financial institution and repayments are made by the borrower also on a regular basis. In such a situation, the rate at which the loan is paid off increases as the loan progresses.

Annuities as a recurrence relation
As it appears in Unit 3

- To find the amount still owing -

\[V_{n+1} = R \times V_n - d, \text{ given } V_0 \]

where
- \(V_n \) = value of the investment after \(n \) time periods
- \(V_0 \) = initial (starting) amount
- \(d \) = payment each time period
- \(R = 1 + \frac{r}{100}, \ r = \text{interest rate per period} \)

Example. A loan of $2400 is taken out with a reducing balance interest rate of 4.5% per annum with interest debited monthly. The borrower wishes to pay instalments of $154.82 per month.

a. Write down a recurrence relation that will find the amount of loan left after \(n \) months.

\[V_{n+1} = 1.00375 \times V_n - 154.82, \quad V_0 = 2400 \]

b. Use the recurrence relation to find the amount owing after 4 months.

\[V_0 = 2400 \]
\[V_1 = 1.00375 \times 2400 - 154.82 = 2254.18 \]
\[V_2 = 1.00375 \times 2254.18 - 154.82 = 2107.81 \]
\[V_3 = 1.00375 \times 2107.81 - 154.82 = 1960.89 \]
\[V_4 = 1.00375 \times 1960.89 - 154.82 = 1813.43 \]

c. What, to the nearest month, would be the term of such a loan?

Generate the table on CAS spreadsheet.

\(n = 16 \) instalments.

It will take 16 months to fully pay off the loan of $2400.
2. The term of a loan is 3 years during which installments are paid quarterly with interest debited accordingly. The installments with the greatest proportion being interest would be the:

a. $2,975
b. $3,200
c. $3,525
d. $2,924

The term of a loan is 3 years during which installments are paid quarterly with interest debited accordingly. The installments with the greatest proportion being interest would be the:

a. $2,975
b. $3,200
c. $3,525
d. $2,924

How much interest did Eddie pay in total after 10 months?

Use the recurrence relation to find the how much Eddie will still owe after 6 months.

Write down a recurrence relation to model this loan monthly installments of $730.54. Eddie takes a loan of $7200 at a rate of 12% p.a. (interest debited monthly) and is to be repaid with

Review Questions
Using TVM solver
As it appears in Unit 4

- Used to find the number of repayments required to repay a loan in full
 - N = number of repayments
 - I% = nominal interest rate (% p.a.)
 - PV = amount borrowed/current amount owed (positive number)
 - PMT = regular payment amount (negative number)
 - FV = final amount owing (0 or negative number)
 - P/Y = number of payments per year
 - C/Y = number of compounds per year
 - PMT:END BEGIN – END should be left highlighted (charged every month)

Example. A charity organisation has $150 000 to set up a perpetuity as a grant used to fund their ongoing work. The charity invests in bonds that return 7.5% p.a. compounded annually. Use TVM Solver on a graphics calculator to calculate:

a. the amount of the annual grant

 From the graphics calculator,
 \(Q = $11250 \)

b. what interest rate (compounded annually) would be required if the perpetuity is to provide $12000 each year?

 From the graphics calculator,
 \(r = 8\% \text{ p.a.} \)

Review Questions

3. The private company “Lenders” offers loans of $30 000 to people at a rate of 6.5% p.a. (debited monthly). The loan is repaid in instalments of $504.30 over 6 years. The amount still owing after 3 years of repayments is:

 A. $28967.50
 B. $164316453.89
 C. $8213.15
 D. $30480.50
 E. $36311.10
6. Jake wanted to borrow $42,000 and was offered a reducing balance loan over 15 years at 9.75% pa.

a. Find the fortnightly repayment value.
(based fortnightly)

b. How long will it take to repay the loan in full?

c. The interest paid during the 15th repayment.

d. The principal repaid during the 20th repayment.

5. A loan of $11,000 is being repaid by monthly instalments of $362.74 with interest being charged at 11.5% p.a. (adjusted monthly). Currently the amount owing is $7,744.05.

a. How long will it take to reduce the amount outstanding to $2,105.11?

4. David has borrowed $45,000 to buy a car. He agrees to repay the reducing balance loan over 15 years with monthly instalments at 9.3% p.a. (adjusted monthly). Find the instalment value (using TVM solver).
b. What would be the term of the loan if the repayment was changed to $253.17?

c. What would be the term of the loan if the repayment was changed to $190.56?

7. A reducing balance loan of $80000 is taken out at 7.9% p.a. (adjusted monthly). If it is to be repaid with monthly instalments of $639.84, the loan will be paid in full in

A. 10 years
B. 15 years
C. 20 years
D. 25 years
E. 22 years

8. If interest (r) of 7.5% p.a. is to be debited fortnightly on a loan requiring fortnightly repayments, then the growth rate (R) would be closest to:

A. 0.002
B. 0.003
C. 1.003
D. 1.002
E. 1.0075

9. If $1230 was borrowed at 6% p.a. by Jack, with instalments due monthly and interest debited monthly, then the required instalments needed to fully pay out the loan in 3 years would be:

A. $37.42
B. $17.25
C. $37.41
D. $17.42
E. none of the above
Example: Anthony had $12.45 that he had earned while working at a fast food establishment. He invested it in an interest-bearing account for 36 months earning 6.4% p.a. simple interest. How much interest should he have accrued?

\[
\frac{0.04}{1 + 0.04} = I
\]

\[
\frac{1.04^3 - 1}{0.04} = I
\]

\[
\frac{1.04^3 - 1}{36} = \frac{I}{d}
\]

\[
\frac{100}{d} = I
\]

Payments

- Calculation - Effective interest rate: \[\text{Effective interest rate} = \frac{\text{Interest earned}}{\text{Amount borrowed}} \]
- Estimation - Net interest: \[\text{Net interest} = \text{Interest} - \text{Principal} \]

Effective rate of interest

\[
\text{Effective rate of interest} = \left(1 + \frac{u}{n}\right)^n - 1
\]

Interest charged

\[
\text{Interest charged} = \text{Principal} \times \text{Rate} \times \text{Time}
\]

For reducing balance loans interest is calculated on the amount outstanding each period (beneficial)

\[
\text{Interest rate per annum} = \frac{I}{d}
\]

\[
\frac{100}{d} = I
\]

As it appears in Unit 4

Reducing balance and flat rate comparisons
Review Questions

10. Stephen wanted to borrow $24000 and was offered a reducing balance loan over 10 years at 6.6% p.a. (debited monthly)

 a. Find the repayment value.

 __
 __
 __

 b. Find the total amount of interest paid.

 __
 __
 __

 c. Find the equivalent flat rate of interest for the loan if all the other variables are the same.

 __
 __
 __

11. If the effective interest rate is 8.5% p.a. on a hire purchase with monthly repayments over 4 years, then the flat rate is closest to:

 A. 16.7%
 B. 17%
 C. 4.3%
 D. 9.7%
 E. 4.1%
a. Find the monthly contributions needed to meet the retirement lump sum target.

p.a. compounded monthly.

Provided for his retirement, His current superannuation fund has a balance of $60000 and is delivering 7%

12. Keith is aged 45 and is planning to retire at 65 years of age. He estimates that he needs $480000 to

Review Questions

$749700

Use TVM solver to get:

\[
\text{Future Value} = 100000, \quad \text{Rate} = 7.4\%, \quad \text{Periods} = 45, \quad \text{Payment} = p
\]

The contribution of $749700. Find, to the nearest thousand dollars, the annual amount available at the end of the term.

p.a. compounded monthly. The fund has another 20 years to go before the big payoff. There is a monthly

Example. An annuity investment has a current balance of $140 000 and is earning 5% in interest. What is the

value of the investment after n payments.

\[
\frac{100}{d} + 1 = g
\]

where \(g \) is the interest rate per payment period.

where deposit each time period = \(p \)

\(p + "A \times g = 1" \Rightarrow A \)

\(\Rightarrow \) Superannuation

\(\Rightarrow \) Annuity investment - is an investment where an initial sum and regular deposits are made (e.g.

\[
\frac{100}{d} + 1 = g
\]

where \(g \) is the interest rate per payment period.

\(\Rightarrow \) Annuity investment - is an annuity where a permanent sum of money provides regular payments that

\[
\frac{100}{d} = \bar{d}
\]

\(\Rightarrow \) Perpetuity - is an annuity where a permanent sum of money provides regular payments that

As it appears in Unit 4

Annuities and Annuity Investments
b. If in the final 10 years before retirement, Keith doubles his monthly contribution calculated from a, find the new lump sum amount needed for retirement

c. How much extra could Keith expect if the interest rate from part b is increased to 9% p.a. (for the final 10 years) compounded monthly.

13. Adam has $20 000 to invest in an annuities investment. He contributes a further quarterly amount of $450 and earns an interest rate of 4% p.a., interest credited quarterly. Adam plans to withdraw the total amount in 5 years time. Which of the following is the final payout?

A. $26770.40
B. $23315.70
C. $34312.40
D. $73085.30
E. $14495.20

Amortisation table
As it appears in Unit 4

- An amortization table enables you to follow the repayment of a loan on a step-by-step basis.

Example. A student takes a loan personal loan for a new computer. She borrows $1600 at the rate of 12% p.a. compounded monthly. She will repay the loan with 6 equal monthly payments of $276.

<table>
<thead>
<tr>
<th>Payment Number</th>
<th>Payment made</th>
<th>Interest paid</th>
<th>Principal reduction</th>
<th>Balance remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1600</td>
</tr>
<tr>
<td>1</td>
<td>276</td>
<td>16</td>
<td>260</td>
<td>1340</td>
</tr>
<tr>
<td>2</td>
<td>276</td>
<td>13.40</td>
<td>262.60</td>
<td>1077.40</td>
</tr>
<tr>
<td>3</td>
<td>276</td>
<td>10.77</td>
<td>265.23</td>
<td>812.17</td>
</tr>
<tr>
<td>4</td>
<td>276</td>
<td>8.12</td>
<td>267.88</td>
<td>544.30</td>
</tr>
<tr>
<td>5</td>
<td>276</td>
<td>5.44</td>
<td>270.56</td>
<td>273.74</td>
</tr>
<tr>
<td>6</td>
<td>276</td>
<td>2.74</td>
<td>273.26</td>
<td>0.48</td>
</tr>
<tr>
<td>Total</td>
<td>1656</td>
<td>56.47</td>
<td>1599.53</td>
<td></td>
</tr>
</tbody>
</table>

© TSSM 2016
To find the interest paid in the 150th payment, use the formula for the payment in part b. Then subtract this from the installment amount of $464.79.

Find the principal paid in the 150th payment using the method in part b. Then subtract this from the installment amount of $464.79.

c. $988.5 (using the TVM solver)

19th payment (N = 19) and the amount owed after the 20th payment (N = 20).

Use the PMT value found in part a and find the difference between the amount owed (FV) after the 19th payment and the amount owed (FV) after the 20th payment.

This gives PMT = $464.79 so installment value is $464.79.

N = 180, I% = 9.3%, A = 5000, PMT = ?

p/ A = 0.0, p/ A = C/ \gamma = 12.

4. Use TVM Solver

Explanation:

3. Answer: B

The first one will bear the greater interest.

Explanation:

2. Answer: A

c. $30,540.10 + 31,215 - 7200 = $41,562

b. Construct a table of values on CAS. 3148.65

a. \(A = \frac{I}{10} \times 730.54 \), \(I = 7200 \)

1. Solutions to Review Questions
5. a. \[n = N = ? \]
 \[r = 1\% = 11.5 \]
 \[P_S = PV = 7744.05 \]
 \[Q = PMT = -362.74 \]
 \[A = FV = -2105.11 \]
 \[P/Y = 12 \]
 \[C/Y = 12 \]
 Put the above values on the TVM solver and it will give \(n = 18 \) months

 b. Same as in part a with \(FV = 0 \) which gives \(n = 2 \) years

6. a. \$205.16 (Put the values in the TVM solver)

 b. 10 years (Put the values in the TVM solver)

 c. 18 years (Put the values in the TVM solver)

7. Answer: E

 Explanation:

 Put the values in the TVM solver.

8. Answer: C

 Explanation:

 \[
 1 + \frac{7.5}{2400} = 1.003
 \]

9. Answer: A

 Explanation:

 Use TVM solver to get \$37.41898

10. a. \$273.74 (Put the values on the TVM solver)

 b. \$8848.80 (273.74 \times 120 - 24000)

 c. 3.69%
Substitute the values on TVM solver

Explanation:

13. Answer: C

Difference = 65977.29 - 55897.401 = $100783.28

a. Use TVM solver to get the amount:

A = $55897.40

b. Use TVM solver to get the monthly repayment:

P = $5456.26

c. Use TVM solver to get the interest rate.

Effective Interest rate = $ \left(1 + \frac{P}{n} \right) ^{n} - 1

Use the formula:

Explanation:

11. Answer: C